Энциклопедия Брокгауза и Ефрона

Поляризация света

Поляризация света
Поляризация света
I. Определения. — II. Прямолинейно поляризованный свет. — III. Эллиптически поляризованный свет. — IV. Источники поляризованного света. — V. Распознавание поляризованного света. — VI. Отражение и преломление поляризованного света. — VII. Вращение плоскости П. — VIII. Интерференция поляризованного света.
I. П. света названо было явление особого видоизменения естественных световых лучей, исходящих от обыкновенного источника света, при котором лучи приобретают как бы различные свойства по различным направлениям, перпендикулярным к направлению луча; такое свойство лучей может быть вызвано в самом источнике света, если поставить последний в некоторые определенные условия (см. ниже), но оно может быть искусственно придано и лучам, вышедшим из источника света в естественном их состоянии. Общепринятая теория света Френеля, объясняющая явления света колебанием частиц эфира, передачей колебания от частицы к частице и являющимся, таким образом, распространением в эфире волн, вполне объясняет и явление П. света предположением о различной возможной форме путей колебания частиц эфира. Эта теория предполагает, что в неполяризованном естественном луче частицы эфира колеблются каждая в плоскости перпендикулярной к лучу J (фиг. 1) по прямой линии, проходящей через положение равновесия частицы; направление этой прямой линии непрерывно и чрезвычайно быстро переходит из одного положения a в другое b, далее в с и т. д., но оставаясь постоянно в одной плоскости; подробности о возможных формах колебания частиц у естественного луча см. Свет.
Фиг. 1. Фиг. 2.
Фиг. 1. Фиг. 2.
Если колебания частиц эфира происходят не по всем прямым, возможным в плоскости А, перпендикулярной к лучу (фиг. 2), а постоянно лишь по одной прямой ab, то мы говорим, что луч прямолинейно поляризован: плоскость ВВ, проходящую через луч и путь колебания частицы, называем плоскостью колебания прямолинейно поляризованного луча; плоскость же СС, проходящую тоже через луч и перпендикулярную к плоскости колебаний, принято наз. плоскостью П. луча [Плоскость II. представляет, в сущности, самостоятельное понятие, не связанное генетически с понятием о плоскости колебания. Теория Френеля и полагает, что плоскость П. перпендикулярна к плоскости колебания, теория же Неймана полагает, что они совпадают. Первая теория более общепринята; подробнее см. Свет]. Таким образом, луч естественный мы можем себе представить, как луч прямолинейно поляризованный, у которого плоскость колебания, а следовательно, и плоскость П. непрерывно меняются. Когда частица эфира движется вокруг своего положения равновесия о, описывая непрерывно в плоскости, перпендикулярной к лучу, один и тот же эллипс (фиг. 3), то мы говорим, что это луч и свет эллиптически поляризованный.
Фиг. 3. Фиг. 4.
Фиг. 3. Фиг. 4.
Эллипс этот может быть весьма различного вида; он может быть весьма растянутым и в конце концов перейти в прямую линию (прямолинейно поляризованный луч); или обе оси его могут быть равны, и тогда эллипс перейдет в круг и свет называется поляризованным по кругу (фиг. 4). Распространение колебания в случае луча, поляризованного эллиптически или по кругу, нужно себе представить так, как это изображено на ф. 5.
Фиг. 5.
Фиг. 5.
Точки о, а, b, с, d суть положения равновесия эфирных частиц на луче AB движущихся по окружности эллипсов, плоскости которых перпендикулярны к лучу. Когда частица о находится в положении о', то частица a находится в а", а положения частиц b, с, d будут b", с", d". Если мы эти положения соединим непрерывной чертой, то получим винтовую линию, начерченную на эллиптическом цилиндре. Через мгновение а, двигаясь по направлению стрелки, из а" придет в а', настолько же передвинутся другие частицы, и винтовая линия повернется на а"а' вокруг AB.
II. Прямолинейно поляризованный свет и его свойства. Способы, посредством которых искусственно можно превратить свет естественный в прямолинейно поляризованный, следующие: 1) Отражением света. Отразим луч естественного света ab от стеклянной пластинки fghi (фиг. 6) так, чтобы угол, составляемый лучом и перпендикуляром к пластинке в точке b (угол падения), равнялся приблизительно 5°.
Фиг. 6.
Фиг. 6.
Отраженный луч bc будет прямолинейно поляризован; плоскость П. совпадает с плоскостью падения, т. е. плоскостью, проведенной через падающий и отраженный луч; плоскость колебаний к ней перпендикулярна. Если заставим луч упасть на другое зеркало, параллельное первому, то он отразится вполне по направлению bd. Если же мы станем вращать верхнее зеркало вокруг луча bс, как вокруг оси, так чтобы угол падения луча на верхнее зеркало оставался равным 55° (верхнее зеркало уже не будет тогда параллельным нижнему), то мы заметим, что по мере поворачивания верхнего зеркала отраженный свет будет слабеть, совершенно исчезнет, когда зеркала будут скрещены (верхнее зеркало повернуто на 90°; см. положение зеркал AB и S на фиг. 9), появится при выходе зеркала из этого положения и достигнет снова нормальной силы, когда после поворота верхнего зеркала на 180° ab, bc и cd будут опять лежать в одной плоскости (зеркала не параллельны друг другу). При повороте верхнего зеркала на 270° луч снова не отразится, но вновь появится, когда зеркало после поворота на 360° снова вернется в свое прежнее положение (фиг. 6). Угол а, составляемый плоскостями проведенными через а — bc и через bc — cd, называется азимутом зеркал друг относительно друга; итак, свет вполне отражается, когда азимут 0° и 180°, и совершенно не отражается когда азимут 90° и 270°. В промежуточных положениях количество отраженного света определяется по закону Малюса (1808), гласящему, что количество отраженного света J' равняется количеству падающего J, умноженному на квадрат косинуса угла азимута α:
J' = Jcos2α.
На фигуре 7 графически изображено количество отраженного света при различных азимутах, для чего на продолжении радиусов круга 0—90—180—270 отложены величины, пропорциональные количеству отраженного света.
Фиг. 7.
Фиг. 7.
Для нахождения количества отраженного света при некотором азимуте с проводим из центра линию cd, и отношение cd к ob даст отношение количества отраженного света к количеству падающего. Причина описанных явлений лежит в особенностях отражения прямолинейно поляризованного света; в этих особенностях кроется и причина П. света при отражении; обо всем этом см. Свет. Закон Малюса справедлив, однако, не только в данном случае, но представляет общий закон, выражающий зависимость количества света, прошедшего через систему из двух поляризующих приборов, от азимута одной плоскости П. относительно другой. Если стеклянная пластинка наклонена к лучу под углом, большим или меньшим 55°, то не весь падающий на нее естественный свет превращается в прямолинейно поляризованный, а лишь часть его, и отраженный свет есть свет, частью прямолинейно поляризованный; лишь та часть его, которая прямолинейно поляризована, претерпевает вышеописанные изменения при вращении верхнего зеркала, а следовательно, полного исчезновения отраженного от зеркала света ни при каком азимуте не происходит. Тот угол падения луча на пластинку, при котором весь отраженный свет прямолинейно поляризован. называется углом полной П. и зависит от вещества пластинки. Для стекла он 55°, для воды 53°, для алмаза 68°. Брюстер (1815) показал, что угол полной П. есть тот угол i (фиг. 8), при котором тангенс угла падения луча ab равен коэффициенту преломления данного вещества, т. е. tgi = n; при таком угле падения угол между отраженным лучом bc и преломленным лучом bd есть прямой.
Фиг. 8.
Фиг. 8.
Изложенные законы и явления относятся лишь к телам неметаллическим; при отражении света от металлов получается вообще свет эллиптически поляризованный, и наблюдаемые явления значительно сложнее (см. ниже). Таким образом, зеркало, на которое падают естественные лучи под углом полной П., может служить удобным прибором для получения прямолинейно поляризованного света, или поляризатором; такое же зеркало, на которое под тем же углом падают прямолинейно поляризованные лучи, может при вращении его служить средством для распознавания прямолинейно поляризованного света — или анализатором. Пользуясь стеклянными зеркалами, Норренбер построил весьма распространенный поляризационный прибор (фиг. 9), состоящий из двух стеклянных зеркал AB и S, прикрепленных так к вертикальным стойкам, что зеркала могут вращаться вокруг горизонтальной оси.
Фиг. 9.
Фиг. 9.
Кроме того, верхнее зеркало вращается еще вместе с его стойками вокруг вертикальной оси, причем угол поворота может быть отсчитан по верхнему деленному кругу. В нижнюю основную пластину прибора вделано горизонтальное обыкновенное зеркало с. Зеркало AB, представляющее собой прозрачную стеклянную пластинку, устанавливается так, что плоскость его составляет угол в 35° с вертикальной линией. Какой-либо луч а, идущий от небосвода, отражается по пути bc вертикально вниз, при этом поляризуется прямолинейно, попадает на зеркало с перпендикулярно к последнему, отражается снова вверх по пути cbS и попадает на анализатор S, состоящий из непрозрачного зеркала из черного стекла, наклоненного тоже под углом в 35° к вертикали. Между зеркалами на тех же стойках прикреплен небольшой поворотный стеклянный столик, на который кладут те предметы, которые желают исследовать в поляризованном свете. 2) Преломление света. При падении естественного света на стеклянную пластинку под углом полной П. часть света преломляется, при чем оказывается тоже прямолинейно поляризованной, но плоскость колебаний и плоскость П. перпендикулярны к таковым же плоскостям у отраженного луча. Однако преломленный и прошедший через пластинку свет не вполне, а лишь частью поляризован, и потому, чтобы сделать по возможности большую часть прошедшего света поляризованной, заставляют лучи проходить через ряд тонких параллельных стеклянных пластинок, наклоненных к лучу под углом полной П. Такой прибор, могущий служить и поляризатором, и анализатором, называют стеклянной стопкой (pile de glace); он изображен на фиг. 10.
Фиг. 10.
Фиг. 10.
Стеклянная стопка в соединении с зеркалом может служить поляризационным прибором (можно, напр., в приборе Норренберга заменить верхнее зеркало стеклянной стопкой, но ввиду перпендикулярности плоскости П. отраженного и преломленного света затемнение в этом случае произойдет тогда, когда зеркало и стопка будут параллельны друг другу). Количество прошедшего через стопку света тоже следует общему закону Малюса. 3) Двойное лучепреломление (см.). При прохождении света через двоякопреломляющую среду естественный луч разбивается, вообще говоря, на два луча, прямолинейно поляризованных, плоскости П. которых друг другу перпендикулярны. Таким образом, пропускание света через двупреломляющую среду дает простейший способ получить прямолинейно поляризованный свет; для этого достаточно уединить один из двух поляризованных лучей, образовавшихся от разложения луча естественного света в двупреломляющей среде; последнего можно достигнуть следующими способами: а) Один из лучей задерживают посредством непрозрачной диафрагмы. На фиг. 11 изображен в оправе кристалл двупреломляющего известкового (исландского) шпата.
Фиг. 11.
Фиг. 11.
Падающий на кристалл пучок естественных лучей а разбивается на два поляризованных пучка о и е, из которых е задерживается металлической оправой, а о свободно проходит через отверстие в ней. Неудобство такого поляризатора состоит в том, что для достаточного разделения пучков о и е требуется довольно длинный кристалл и что получающийся прямолинейно поляризованный пучок о может быть лишь весьма тонким. Комбинированием призм из исландского шпата с призмами из стекла можно, правда, увеличить угол расхождения между пучками, но все же эти поляризующие призмы теперь совершенно заменены b) призмами, в которых одному из пучков дают другое направление, пользуясь полным внутренним отражением (см. Диоптрика). Первый и наиболее известный из этих приборов есть призма Николя (1828), или "Николь", изображенная на фиг. 12.
Фиг. 12.
Фиг. 12.
Длинный ромбоэдр исландского шпата отшлифовывается по основаниям так, чтобы последние образовали с ребрами угол в 68° (в естественном состоянии этот угол равен 71°); его распиливают затем перпендикулярно к основанию; получившиеся две части снова склеиваются с помощью канадского бальзама отполированными предварительно сторонами НН. Естественный луч ab по входе в призму разбивается на два — необыкновенный bc', свободно проходящий через призму, и обыкновенный bc, претерпевающий от поверхности канадского бальзама (коэфф. преломления 1,54) полное внутреннее отражение и отражающийся поэтому по направлению cd; плоскость колебания вышедшего из призмы прямолинейно поляризованного луча d'e расположена в плоскости чертежа и указана штриховкой луча. Длинные, достаточно чистые кристаллы исландского шпата весьма редки и дороги, и посему часто делались попытки, исходя из тех же принципов, построить поляризующие призмы меньших размеров; таковы призмы Фуко (1857), Гартнака (1866, лучшая из существующих), Глана (1881). Призма Фуко, отличающаяся своей короткостью (фиг. 13), содержит между двумя составляющими ее частями слой воздуха, от которого происходит отражение обыкновенного луча; ход луча виден на чертеже.
Фиг. 13.
Фиг. 13.
Липпих (1882) и Ландольт (1879) показали, что не все лучи пучка параллельных лучей, прошедших через поляризующую призму, имеют одну и ту же плоскость колебаний, но что последняя слегка различна для различных лучей, т. е. что П. получается неравномерная; наиболее равномерна П. в призме Глана, видоизмененной С. Томпсоном. Поляризующие призмы удобны в качестве поляризатора и анализатора как по совершенству, с которым поляризуют лучи, так и потому, что не отклоняют проходящие через них лучи. К сожалению, ныне по причине редкости чистых кусков шпата поляризующие призмы значительных размеров весьма дороги. с) Один из лучей поглощается кристаллом. Турмалин (см.) и некоторые другие двупреломляющие кристаллы поглощают один из двух образующихся в них при двупреломлении прямолинейно поляризованных лучей, другой же пропускают свободно (см. Полихроизм). Турмалин (ф. 14), отшлифованный параллельно своей кристаллографической оси в пластинку abcd толщиной около 1 мм, почти совершенно поглощает обыкновенный луч и свободно пропускает необыкновенный, плоскость колебания которого hi параллельна кристаллографической оси; такая турмалиновая пластинка может служить простейшим поляризатором и анализатором.
Фиг. 14.
Фиг. 14.
Две такие пластинки (ф. 15 и 16) abcd и efgh, сложенные так, что оси их (указаны штриховкой на чертеже) параллельны, а следов., плоскости колебания и П. прошедших через них лучей совпадают, свободно пропускают через себя лучи; если же пластинки скрещены (фиг. 16), то есть азимут одной пластинки относительно другой 90° или 270°, то свет через такую комбинацию пройти не может.
Фиг. 15. Фиг. 16.
Фиг. 15. Фиг. 16.
Две такие пластинки, вставленные во вращающиеся оправы, зажатые в кольцах проволочных щипцов (фиг. 17), дают простейший прибор для исследования предметов в поляризованном свете — турмалиновые щипцы; исследуемый предмет (кристалл, см. ниже) зажимается между двумя пластинками, из которых одна, А, поляризует проходящий чрез предмет свет, другая, В, служит анализатором. Неудобство турмалиновой пластинки в качестве поляризующего прибора лежит в том, что турмалины, обладающие указанным свойством, всегда густо окрашены, обыкновенно в зеленый цвет.
Фиг. 17.
Фиг. 17.
III. Эллиптически поляризованный свет происходит обыкновенно от сложения колебаний двух лучей, прямолинейно поляризованных, имеющих перпендикулярные друг другу плоскости колебаний и из которых один на некоторую часть длины волны отстает от другого, или, как говорят, между которыми существует некоторая разность хода (см. Интерференция). Если оба луча имеют одну и ту же амплитуду колебания (см. Колебательное движение) и плоскости колебаний их расположены, положим, вертикально и горизонтально, то 1) при отсутствии между ними разности хода они, слагаясь, дают один прямолинейно поляризованный луч, плоскость колебания которого расположена под углом в 45° к горизонту (см. фиг. 18); 2) при разности хода φ, равной 1/8 длины волны λ (φ = 1/8λ) получается эллиптически поляризованный луч с направлением движения частицы, указанным стрелкой; 3) при φ = ¼λ получается луч, поляризованный по кругу; 4) при φ = 3/8λ получается опять эллиптически поляризованный луч, но эллипс иначе наклонен; 5) при φ = ½λ получается опять прямолинейно поляризованный луч с плоскостью колебания, перпендикулярной к плоскости колебания в случае 1.
Фиг. 18.
Фиг. 18.
При других разностях хода получаются колебания, указанные на фиг. 18. Если слагающие свои колебания лучи имеют разные амплитуды, то, опять-таки, вообще получается в результате луч прямолинейно поляризованный, круговой или эллиптический, в зависимости от отношения амплитуд и от разности хода. Если разность хода раз навсегда сделать равной λ/4, то при равных амплитудах получается (как выше) круговой луч, при амплитуде одного луча большей, чем у другого, — луч эллиптически поляризованный; когда амплитуда одного из лучей равна нулю, то остается лишь другой луч, прямолинейно поляризованный. Для искусственного получения эллиптически поляризованного луча из вышесказанного прямо следуют два способа: 1) Прямолинейно поляризованный луч пропускаем через пластинку двупреломляющего вещества, расположенную так, что луч выходит из нее, разбившись на два, одинаковой амплитуды, но поляризованных в перпендикулярных плоскостях (см. Двойное лучепреломление); оба луча распространяются в одном и том же направлении. Так как скорость распространения этих двух лучей в двупреломляющей среде неодинакова, то лучи выходят из пластинки с некоторой разностью хода, зависящей от толщины пластинки и скоростей лучей, и, слагаясь, дадут, следовательно, по вышесказанному, эллиптически поляризованный луч. Если пластинка такова, что разность равна ¼ длины волны, то выходящий из нее свет будет поляризован по кругу; такие пластинки, называемые обыкновенно пластинкою в четверть волны (¼λ) [Буквою λ обозначают обыкновенно длину волны.], готовятся из листочков слюды толщиною в 0,032 мм. Для получения произвольной разности хода пользуются сложной пластинкой — компенсатором Бабине (Babinet), состоящим из двух кварцевых клинообразных пластинок (фиг. 19), наложенных друг на друга так, что они образуют вместе пластинку с параллельными сторонами.
Фиг. 19.
Фиг. 19.
Один из клиньев отшлифован ребром своим параллельно оптической оси кварца, другой перпендикулярно к ней (ось на фиг. 19 указана штриховкой и пунктиром), так что пройдя первый клин, лучи приобретают одну разность хода, пройдя другой — другую, обратного направления. Если пластинки в нормальном положении (фиг. 19), то луч, проходящий через центр О, проникает через одинаковую толщу обеих пластин и поэтому два получающиеся луча не имеют разности хода. Если же, оставив верхнюю пластинку неподвижной, сдвинем нижнюю направо, то толща нижней пластинки под О уменьшится и лучи выйдут с некоторой разностью хода, величина которой будет зависеть от разности толщин пластинок в О. 2) Прямолинейно поляризованный луч пропускаем через пластинку в ¼λ; вращая плоскость П. падающего луча относительно неподвижной пластинки, можно (см. Свет) менять отношение амплитуд колебаний двух вышедших из пластинки лучей, а следовательно, и получить (по вышесказанному) при сложении колебаний (см. выше) по желанию эллиптический, круговой или прямолинейно поляризованный луч. Эллиптически поляризованный свет можно получить также 3) при полном внутреннем отражении прямолинейно поляризованного света внутри стекла или другой прозрачной среды.
Фиг. 20. Фиг. 21.
Фиг. 20. Фиг. 21.
Если на призму (фиг. 20) NR упадет прямолинейно поляризованный луч а, так что плоскость П. его составляет некоторый угол с плоскостью отражения, то после отражения в b от поверхности ΝR он выйдет в bc эллиптически поляризованным. Это объясняют, согласно теории Френеля, тем, что прямолинейно поляризованный луч разбивается на два таких же, но поляризованных один в плоскости падения, другой перпендикулярно к ней, причем эти два луча получают при отражении разность хода и неодинаковое изменение амплитуды. Френель нашел, что при отражении внутри стекла под углом около 55° разность хода этих двух лучей равна 1/8λ, так что после двух таких отражений она равна ¼λ, и, следовательно, при одинаковой амплитуде обоих лучей свет выйдет поляризованным по кругу. Построенный для этой цели прибор — параллелепипед Френеля — изображен на фиг. 21; прямолинейно поляризованный луч входит в bc в стеклянный столбик, отражается два раза под 55° в p и s и выходит из ad поляризованным по кругу. 4) При отражении прямолинейно поляризованного света от металлов. Явления металлического отражения (см. Свет) вообще весьма сложны и сравнительно мало выяснены: объяснение превращения прямолинейно поляризованного света в эллиптический в общем то же, что и при полном внутреннем отражении. В некоторых случаях достаточно однократного отражения, чтобы получить луч, поляризованный по кругу. Весьма вероятно, что и при отражении от всех других веществ (и стекла) получается вообще эллиптически поляризованный луч, но для стекла, например, этот эллипс настолько растянут, что не может быть различен от прямой; значительное влияние на отражение имеет и характер поверхностного слоя вещества; этот последний вопрос еще мало выяснен.
IV. Источники поляризованного света. Все самосветящиеся источники света излучают вообще [Кажущееся исключение представляет раскаленный турмалин, который излучает частью прямолинейно поляризованный свет, это объясняется, вероятно, тем, что лучи, насылаемые внутренними слоями турмалина, поляризуются, проходя через внешние слои турмалина.] свет естественный, П. же появляется лишь при отражении света или преломлении его. Так, напр., свет, излучаемый небесным сводом, отчасти прямолинейно поляризован (Араго, 1809), причем плоскость П. проходит приблизительно через рассматриваемую точку небосвода, солнце и глаз наблюдателя. Степень П. различных точек небосвода различна, существует (на угловом расстоянии 90° от солнца) точка наибольшей П. и несколько "нейтральных точек", излучающих естественный свет. Исследованием еще не вполне ясного вопроса о П. небосвода занимались Араго (1809), Бабине (1840), Беккерель (1880), Пильчиков (1892) и др. Лучи от солнца и других источников света, отраженные от земных предметов, от воды и т. д., тоже поляризованы в более или менее значительной степени. В 1896 г. Зееман открыл замечательное явление, названное его именем; оно состоит в том, что самосветящийся источник света (пламя, Гейсслерова трубка, искра), помещенный в сильном магнитном поле, излучает комплекс лучей, из которых можно выделить лучи прямолинейно поляризованные и поляризованные по кругу. Это сложное и не вполне еще ясное явление (см. Свет) дает первый известный нам естественный источник поляризованного света.
V. Распознавание поляризованною света. Глаз человека не обладает способностью непосредственно отличать поляризованный свет от естественного. Лишь при значительном внимании можно заметить, что прямол. поляризованный свет дает на сетчатке впечатление особого, весьма слабо заметного рисунка, слегка различного у различных людей и лучше всего видного, если смотреть через николь на освещенную белую бумагу; автору он представляется в виде размытой желтой восьмерки, окруженной голубым сиянием. Этот рисунок, называемый по имени впервые заметившего его ученого "пучком Гайдингера", происходит, как выяснили Жамен и Гельмгольц, от особенностей структуры оптической части глаза. Чтобы исследовать характер П. исследуемого света, пользуются обыкновенно николем в качестве анализатора и пластинкой в четверть волны. Различные могущие представиться при этом случаи следующие: испытуемый свет 1) естественный, 2) прямолинейно поляризован, 3) отчасти прямолинейно поляризован, 4) эллиптически поляризован, 5) отчасти эллиптически поляризован, 6) поляризован по кругу и 7) отчасти поляризован по кругу. Для распознавания их может служить приводимая ниже таблица, составленная по Маху.
Аналитическая таблица для распознавания рода Л. световых лучей (по Маху).
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
А) Анализатор при | I. На пути лучей поставлена пластинка λ/4; при вращении анализатора J не меняется —  |
| вращении не лучи естественные.  |
| обнаруживает изменений  |---------------------------------------------------------------------------------------------------------------------------------------------|
| силы света J.  | II. При тех же условиях J | 1) J1 = 0. Лучи поляризованы по кругу. |
| | меняется от J1 до J2: |--------------------------------------------------------------------------------------------------|
| | | 2) J1 больше нуля. Лучи отчасти поляризованы по кругу. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
В) Анализатор при | I. J1 = 0. Лучи прямолинейно поляризованы. |
| вращении дает |---------------------------------------------------------------------------------------------------------------------------------------------|
| изменение силы света | II. J1 больше 0. | 1) Ставим на пути пластинку λ/4; при некотором ее |
| от J1 до J2. | | положении J1 = 0. Лучи эллиптически поляризованы.  |
| | |--------------------------------------------------------------------------------------------------|
| | | 2) При всех положениях | a) При этом J1 и J2 получаются при  |
| | | λ/4; сила света J1  | тех же положениях анализатора, |
| | | больше 0.  | что и без пластинки λ/4. Лучи |
| | |  отчасти прямолинейно  |
| | |  поляризованы.  |
| | |  |----------------------------------------------------------|
| | |  | b) J1 и J2 получаются при других |
| | |  | положениях анализатора. Лучи  |
| | |  отчасти эллиптически  |
| | |  поляризованы.  |
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
VI. Отражение и преломление поляризованного света — см. Свет.
VII. Вращение плоскости П. (см., а также Сахариметры, Свет).
VIII. Интерференция (см.) поляризованного света была исследована Френелем и Араго (1819), которые нашли, что она подчиняется следующим законам: 1) лучи, поляризованные в параллельных плоскостях, интерферируют, как лучи естественные. 2) Лучи, поляризованные в перпендикулярных плоскостях, не интерферируют; они складываются (см. выше) в зависимости от амплитуды и разности хода в один луч с колебанием эллиптическим, круговым или прямолинейным. 3) Лучи, поляризованные в перпендикулярных плоскостях и происшедшие от разложения одного естественного луча, не интерферируют, если даже повернуть их плоскости П. так, чтобы они совпали. 4) Лучи, поляризованные в перпендикулярных плоскостях и происшедшие от разложения одного прямолинейно поляризованного луча, интерферируют, если повернуть их плоскости П. так, чтобы они совпали. Если естественный луч проходит через пластинку двупреломляющего вещества, то он разбивается на два, прямолинейно поляризованные в перпендикулярных плоскостях; они согласно закону 3 не интерферируют, если мы даже анализатором (или другим каким-либо способом) приведем их к одной плоскости П. Чтобы наблюдать в этих условиях интерференцию поляризованных лучей нужно, следовательно (зак. 4), пропустить через пластинку прямолинейно поляризованный свет и наблюдать его анализатором; для этой цели может служить прибор Норренберга (фиг. 9; нижнее зеркало поляризует лучи, на среднюю площадку кладется исследуемая пластинка, верхнее зеркало служит анализатором) или прибор, состоящий в главных чертах из двух николей, между которыми помещается пластинка или турмалиновые щипцы (фиг. 17). Наблюдаемые явления существенно зависят от того, проходит ли через двупреломляющую пластинку параллельный пучок света или пучок сходящийся или расходящийся. А) В случае пучка параллельных лучей и света однородного (см. Свет) все лучи, попадающие на пластинку, проходя в одинаковом направлении через нее, разбиваются одинаково на пары лучей, выходящих с одинаковой для всех пар разностью хода. Эти пары лучей не могут пока интерферировать, так как плоскости П. их перпендикулярны друг другу. Если же мы пропустим их дальше через анализатор, то в последнем каждый луч из пары приведется к двум, поляризованным в двух перпендикулярных плоскостях, положение которых зависит от положения плоскости П. анализатора, и интерферировать будут те слагающие первого и второго луча из пары лучей, плоскости П. которых совпадают. Если плоскости П. поляризатора и анализатора скрещены, то при этом интерферирующие лучи совершенно уничтожают друг друга и пластинка будет казаться темной, если разность хода в паре лучей будет равна целому числу длин волн; сложатся же они и пластинка будет казаться светлой, если разность хода равна будет нечетному числу полуволн. Обратное наблюдается в том случае, когда плоскости П. поляризатора и анализатора параллельны. Если пластинка неоднородна или неодинаковой в различных ее точках толщины, то между скрещенными плоскостями П. все те места пластинки, которые дают разность хода, равную целому числу волн, будут казаться черными и пластинка покажется испещренной черными полосами различной формы. Такое изображение дают, например, стеклянные пластинки, в которых нагреванием или сжатием и растяжением вызвана двупреломляемость, неравномерно распределенная по всей поверхности пластинок [Этим пользуются для распознавания неравномерной закалки стекла (см. Оптические стекла).]. Значительно сложнее, но и интереснее явления, если свет не однородный, но сложный белый. Ввиду того, что длины волн различных лучей, составляющих спектр (см.) белого света, различны, то полного затемнения пластинки между скрещенными плоскостями П. быть не может; если пластинка такой толщины, что, напр., лучи желтого света, интерферируя, совершенно уничтожатся, то из проходящего через пластинку сложного белого света различные другие составляющие его части пройдут не с одинаковой интенсивностью через анализатор; напр. фиолетовый с одной стороны и крайний красный луч с другой стороны пройдут вполне, оранжевый и зелено-синий пройдут лишь отчасти, желтый совершенно не пройдет — в результате пластинка покажется окрашенной, в указанном случае, напр., в пурпуровый цвет. Между параллельными плоскостями П. не пройдут через анализатор те лучи, которые между скрещенными плоскостями II. проходили, и наоборот; полученное при этом окрашивание называется дополнительным первому, так как оба, вместе сложенные, дали бы снова белый цвет (см. Гармония красок, табл. I); в описанном нами случае будет наблюдаться бледно-зеленая окраска пластинки, дополнительная пурпуровой. Эти цветовые явления и дали повод неправильно назвать совокупность их явлением хроматической П. Эти цвета пластинок в параллельном поляризованном свете, напоминающие цвета тонких пластинок (см. Интерференция), тем ярче, чем тоньше пластинки; напр. пластинка кварца толщиной в 0,5 мм уже не дает заметного окрашивания. В нижеприводимой таблице даны цвета тонких гипсовых пластинок в зависимости от их толщины.
Цвета гипсовых пластинок в параллельном поляризованном свете.
--------------------------------------------------------------------------------------
|  | Плоскости П. |
| Толщина |------------------------------------------------------------------|
|  | Скрещены | Параллельны |
|-------------------------------------------------------------------------------------|
| 0,05 | Красный | Светл.-зеленов.-синий |
|-------------------------------------------------------------------------------------|
| 0,07 | Голубой  | Золотисто-желтый |
|-------------------------------------------------------------------------------------|
| 0,09 | Желтый | Синий |
|-------------------------------------------------------------------------------------|
| 0,14 | Зеленый | Пурпуровый  |
|-------------------------------------------------------------------------------------|
| 0,17 | Серов.-синий | Матово-желтый  |
|-------------------------------------------------------------------------------------|
| 0,20 | Серо-зеленый | Серо-красный |
|-------------------------------------------------------------------------------------|
| 0,25 | Сине-зеленый | Желто-красный |
|-------------------------------------------------------------------------------------|
| 0,28 | Желто-красный  | Сине-зеленый |
--------------------------------------------------------------------------------------
В случае неоднородности или неодинаковой толщины пластинки в белом свете по вышеизложенным причинам появятся не черные полосы (см. выше), но цветные. Б) Если проходящий через двупреломляющую пластинку однородный свет не параллельный, но сходящийся (или расходящийся), то различные лучи проходят через пластинку по не равным друг другу путям, а следовательно, разности хода для различных пар лучей будут вообще неодинаковы. Для наблюдения явлений интерференции поляризованного света в сходящихся лучах пользуются вообще теми же приборами, что и в случае параллельных лучей, но только посредством системы короткофокусных чечевиц заставляют свет за поляризатором сойтись в фокусе и снова разойтись из него; другая система чечевиц снова собирает этот расходящийся пучок в параллельный и направляет его в анализатор. Исследуемая пластинка помещается так между двумя системами чечевиц, чтобы точка схождения лучей помещалась внутри ее. Если пластинка плоскопараллельная, то на ней черными линиями (между скрещенными плоскостями П.) вырисуется совокупность тех точек, которые дают пары лучей с разностью хода, равной целому числу волн, и светлыми те, которые дают разность хода, равную нечетному числу полуволн. Если пластинка одноосная (см. Двойное лучепреломление) и вырезана так, что плоские стороны ее перпендикулярны к оптической оси, то эти линии вообще будут образовывать ряд концентрических кругов — колец вокруг луча, проходящего перпендикулярно к пластинке; кроме того, этот ряд концентрических кругов будет перерезан черным крестом, происходящим вследствие того, что перпендикулярные друг к другу плоскости П. пар лучей не везде образуют одинаковые азимуты с плоскостью П. анализатора. Между параллельными плоскостями П. получится опять ряд черных колец (на тех местах, где в первом случае были кольца светлые), перерезанных светлым крестом. В двуосной пластинке, вырезанной перпендикулярно к линии, делящей угол между осями пополам, появится, как показывает анализ явления и подтверждает опыт, ряд черных линий — колец в виде лемнискат (см.), перерезанных двумя темными полосами. Чем тоньше пластинка, тем шире кольца и тем дальше они друг от друга отстоят; в очень толстых пластинках кольца могут совершенно исчезнуть или в случае двуосного кристалла превратиться в овальные кольца (крайние линии лемнискат; см. Кривые, табл. I, фиг. 14). Если пластинки вырезаны из кристалла в каком-либо другом направлении относительно оси или осей, то и фигуры получаются в общем другие; Бертэн (1861) дал удобный способ определения формы кривых в пластинках, вырезанных в произвольном относительно осей направлении, рассматривая поверхности равной разности хода в кристалле — изохроматические поверхности. В сложном белом свете по причинам, изложенным выше, явления, сохраняя в общем тот же характер, становятся сложнее; получающаяся сеть кривых является окрашенной в блестящие цвета; явления эти одни из наиболее красивых, известных в физике. Особенной сложностью отличаются кривые в двуосных кристаллах, так как в последних весьма часто оси для лучей различных длин волн не совпадают и угол между осями меняется с температурой, но неодинаково для различных лучей. В кристаллах, обладающих, кроме того, еще вращением плоскости П. (см.), явления еще усложняются. Сложные фигуры получаются также при накладывании друг на друга различных различно вырезанных пластин. Например две пластинки кварца, вырезанные под углом в 45° к оси и сложенные так, что оси их скрещиваются, дают в середине поля зрения черную полосу, а с двух сторон ее параллельные ей цветные полосы. Эта двойная пластинка Савара (1840) в соединении с анализатором может служить чувствительным указателем П. света — полярископом, так как при прохождении через нее света, содержащего даже ничтожное количество прямолинейно поляризованных лучей, дает упомянутые полосы; другое применение ее см. Сахариметрия. Ряд примеров явления хроматической П. приведен на приложенной к статье таблице; изображения, однако, далеко не передают того блеска и перелива цветов, какой наблюдается в действительности.
ХРОМАТИЧЕСКАЯ ПОЛЯРИЗАЦИЯ.
ХРОМАТИЧЕСКАЯ ПОЛЯРИЗАЦИЯ.
1) Исландский шпат; черный крест. 2) Исландский шпат; белый крест. 3) Две пластинки, параллельные оси; гиперболы. 4) Селитра; черный крест. 5) Селитра; гиперболы. 6) Кольца в сахаре. 7) Кольца в кварце. 8) Квадратные кольца в кварце. 9) Спирали в кварце. 10) Скрещенные арагониты; натровый свет. 11) Спирали Эри в кварце. 12) Скрещенные арагониты; натровый свет.
Фиг. 1 и 2 дают явления в белом свете в одноосном кристалле, вырезанном перпендикулярно к его оптической оси. Если такую пластинку вырезать параллельно оси, то она дает сеть гипербол; две такие пластинки, сложенные накрест, дадут фиг. 3. Фиг. 4 и 5 дают типичный рисунок для двуосных кристаллов, шлифованных перпенд. к линии, делящей угол между осями пополам. В кварце, обладающем, кроме двупреломления, еще вращением плоскости П., от совокупного действия этих двух причин образуются более сложные фигуры; фиг. 7 дает кварц, вырезанный перпендикулярно к оси (разница с фиг. 1 особенно заметна во внутреннем кольце); фиг. 8, 9, 11 принадлежат также кварцу и комбинациям вместе сложенных кварцевых пластинок. Фиг. 10 и 12 принадлежат скрещенным пластинкам аррагонита, причем освещение однородное, желтым натровым светом. Фиг. 6 принадлежит двуосному кристаллу, вырезанному перпендикулярно одной из его осей.
Явления хроматической П. в параллельных и в особенности в сходящихся лучах представляют наиболее удобное средство минералога и кристаллографа для распознавания оптических свойств кристаллов, для определения одно- или двуосности их, для определения угла между осями и т. д. Для наблюдения с этой целью весьма малых кристаллов строятся поляризационные микроскопы.
Литература. Общие вопросы о П. света см. Свет. О поляризующих призмах см. Д. Бобылев, "Поляризующие призмы, устроенные наивыгоднейшим образом" (СПб., 1870); К. Feussner, "Ueber die Prismen zur P. des Lichts" ("Zeitschr. für Instrumenten-Kunde", 1884, 41); Grosse, "Die Prismen zur P. des Lichtes" (1888); Lippich, "Ueber polaristrobometrische Methoden" ("Wiener Akad. Berichte", т. 85, 1892). П. солнечного света см. Busch, "Atmosphaerische Polarisation" ("Berichle d. Gymnas. zu Arnsberg", 1890). Приборы для оптического исследования кристаллов в поляризованном свете см. Groth, "Physikalische Krystallographie" (русск. перевод). См. также Оптика.
А. Г.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907
| Ещё

См. также `Поляризация света` в других словарях
ПОЛЯРИЗАЦИЯ СВЕТА - упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью поляризации называют плоскость, в которой лежат E и световой луч), эллиптическую поляризацию света, при которой конец E описывает эллипс в плоскости, перпендикулярной лучу, и круговую поляризацию света (конец E описывает окружность).
(лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям.
(Источник: "Словарь иностранных слов, вошедших в состав русского языка". Чудинов А.Н., 1910)
особое свойство, приобретаемое, при известных условиях. световым лучом и состоящее в том, что у п-ованного луча все колебания эфира совершаются в одной плоскости; такой луч теряет способность отражаться или преломляться в некоторых плоскостях.
(Источник: "Словарь иностранных слов, вошедших в состав русского языка". Павленков Ф., 1907)
Поляризация Света упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью поляризации называют плоскость, в которой лежат E и световой луч), эллиптическую поляризацию света, при которой конец E описывает эллипс в плоскости, перпендикулярной лучу, и круговую поляризацию света (конец E описывает окружность).
Поляризация света
одно из фундаментальных свойств оптического излучения (См. Оптическое излучение) (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). П. с. называются также геометрические характеристики, которые отражают особенности этого неравноправия. Впервые понятие о П. с. было введено в оптику И. Ньютоном в 1704—06, хотя явления, обусловленные ею, изучались и ранее (открытие двойного лучепреломления (См. Двойное лучепреломление) в кристаллах Э. Бартолином в 1669 и его теоретическое рассмотрение Х. Гюйгенсом в 1678—90). Сам термин «П. с.» предложен в 1808 Э. Малюсом. С его именем и с именами Ж. Био, О. Френеля (См. Френель), Д. Араго, Д. Брюстера и др....
ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные направления (плоскость>, в которой лежит E и световой луч, называется плоскостью поляризации), эллиптическую, при которой конец E описывает эллипс>, и круговую (конец E описывает круг). Обычный (естественный) свет не поляризован. Поляризация света возникает при отражении, преломлении света, прохождении через анизотропную среду. Первые указания на поперечную анизотропию светового луча получены Х. Гюйгенсом в 1690; понятие> "поляризация света" было введено И. Ньютоном в 1705, а объяснена поляризация света электромагнитной теорией света Дж.К. Максвелла. Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию све...
Поляризация света
Свойство электрического поля фотонов в луче электромагнитного излучения, состоящее в том, что его пространственное распределение носит неслучайный характер. В случае линейной поляризации векторы электрического поля параллельны. В случае круговой поляризации направление поляризации непрерывно изменяется таким способом, что вектор электрического поля вращается с частотой излучения. Эллиптическая поляризация подобна круговой поляризации, за исключением того, что и величина вектора электрического поля также изменяется, но с вдвое большей частотой. Свойства луча поляризованного света могут быть описаны с помощью набора четырех чисел, известных как параметры Стокса.
Астрономический словарь ПОЛЯРИЗАЦИЯ СВЕТА `Физическая энциклопедия`
физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены голл. учёным X. Гюйгенсом в 1690 при опытах с кристаллами исл. шпата. Понятие «П. с.» было введено в оптику англ. учёным И. Ньютоном в 1704-06. Существ. значение для понимания П. с. имело её проявление в эффектах интерференции света и, в частности, тот факт, что два световых луча с взаимно перпендикулярными плоскостями поляризации непосредственно не интерферируют. П. с. нашла естеств. объяснение в эл.-магн. теории света англ. физика Дж. К. Максвелла (1865-73).
Поперечность эл.-магн. волн лишает волну осевой симметрии относительно направления распространения из-за наличия выделенных направлений (вектора Е - напряжённости электрич. поля и вектора Н - напряжённости магн. поля) в плоскости, перпендикулярной направлению распр...
ПОЛЯРИЗАЦИЯ СВЕТА

упорядоченность в ориентации векторов напряжённостей электрич. Е и магн. Н полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную П. с., когда Е сохраняет пост. направление (плоскостью поляризации наз. плоскость, в к-рой лежат Е и световой луч), эллиптич. П. с., при к-рой конец Е описывает эллипс в плоскости, перпендикулярной лучу, и круговую П. с. (конец Е описывает окружность).

Естествознание. Энциклопедический словарь
ПОЛЯРИЗАЦИЯ СВЕТА

выделение из неполяризованного (естественного) света плоскополяризсванного (см. Поляризация волн. Плоскость поляризации). П. с. осуществляется с помощью поляризац. приборов (поляризац. призмы, поляроиды), осн. на П. с. при отражении и преломлении на границе раздела двух прозрачных диэлектриков (см. Брюстера закон), двойном лучепреломлении и дихроизме. Поляризов. свет используется во мн. приборах, служащих для фотометрич. и пнрометрич, измерений, изучения напряжений в прозрачных моделях, исследования кристаллов, определения содержания оптически активных веществ и т. л.

Большой энциклопедический политехнический словарь 2004
Комментарии
Комментарии отстуствуют
Добавить комментарий
Добавить комментарий
Ваше имя *
E-mail
Комментарий
  
Что еще интересного в `Энциклопедия Брокгауза и Ефрона` ?
Пелид (Πηληίδης, Πηλειδης, Πηληϊάδης) — сын Пелея, Ахилл. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Пропионитрил см. Пропионовая кислота. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Сугань (Joseph Souham, 1760—1837) — граф, франц. генерал. Начав службу в королевских войсках, С. во время революционных войн отличился в сражении при Жемаппе, овладел гор. Куртре и Нимвегеном. По подозрению в участии в заговоре Пишегрю и Моро, был отставлен от службы и арестован; через некоторое время снова был принят на службу и оказал неоднократные отличия в войнах на Пиренейском полуо-ве и в 1813 г. в Германии. В 1814 г. С. командовал дивизией национальной гвардии и участвовал в обороне Пари...
Тезис в философии (греч. θέσις — положение, местоположение, постановление закона, залог) — философское, научное или богословское положение, утверждение. Со времен Канта этот термин приобретает специфическое значение в связи с соотносительным термином — антитезис (противоположение, положение, находящееся к данному в отношении контрадикторном, противоречивом). В 1769 г., который, по словам Канта, имел для последующего переворота в его воззрениях громадное значение, он обратил внимание на...
Беленькая, Верхняя и Нижняя две речки Екатеринославской губернии, притоки Северного Донца; текут к северо-востоку на расстоянии 8-ми верст одна от другой; первая, 20 верст длины, протекает по Бахмутскому, а вторая, 16 верст, — по Славяно-сербскому уезду. В долине Б. — выходы каменного угля, весьма пригодного для обжигания извести и кирпичей. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Шимановский, Вячеслав (Szymanowski, 1821—1886) — польский писатель, был соредактором журнала "Dziennik Warszawski", сотрудником журналов "Wędroec", "Bluscz" и под конец жизни редактор известной газеты типа "мелкой прессы" "Kuryjer Warszawski". Из его драм две: "Salomon" и "Sędziwoj", долго давались на сцене в Варшаве, Вильно, Львове, Кракове и Познани; из его очень сценичных комедий лучшие — "Dzieje serca" (премирована в 1860 г.), "Malka" и "Siła złego na jednego". Отдельно издал: "Szkice Warsz...
Боль Фердинанд (Bol) — живописец нидерландской школы, даровитый ученик Рембрандта, родился 1617 г. в Дортрехте, † 1680 г. в Амстердаме. Об обстоятельствах его жизни почти ничего не известно. Особенно прославился он своими портретами и в этом отношении занимает одно из первых мест в ряду выдающихся портретистов голландской школы. В петербургском Эрмитаже находится, между прочим, его портрет принцессы Нассау-Зигмарингенской. Б. оставил также 16 гравюр, вытравленных крепкой водкой, между которыми...
Гардуен Иван (Hardouin) — ученый французский иезуит (1646-1729). Занимаясь классической археологией, он пришел к странному убеждению, что все произведения классических писателей, за исключением Гомера, Геродота, Цицерона, Плиния Старшего, "Георгик" Вергилия, сатир и посланий Горация, появились в XIII веке после Р. X. и составлены монахами под руководством некоего Севера Архонтия. Это — произведения аллегорические, под языческими формулами скрывающие христианскую историю и христианскую мысль. Та...
Диимид см. Имид. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Дюплесси-Грате I (Жорж-Виктор-Александр Gratet-Duplessis, род. в 1834 г.) — иконограф и историк искусства, в настоящее время (с 1892 г.) хранитель отделения эстампов в парижск. публичной библиотеке. Сверх статей, появлявшихся в главных французск. художественных журналах, им издано много отдельных сочинений, относящихся преимущественно до истории гравирования. Из них наиболее любопытны: "Les graveurs sur bois contemporains" (1857), "Histoire de la gravure en France" (1861), "Le peintre-graveur f...
Амазонки в мифологии этим именем древнее сказание называет народ, состоявший исключительно из женщин, не терпевших при себе мужей, выходивший в походы под предводительством своей царицы и образовавший особое воинственное государство. Для сохранения потомства А. вступали в связь с соседними народами, отсылая им детей мужеского пола, девочек же оставляли у себя для приучения их к войне и выжигали им правую грудь, чтобы она не мешала натягиванию лука. Отсюда произошло название "Амазонки", т. е. бе...
Еженедельное Новое Время журнал; см. Литературный Журнал. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Иванишев (Николай Дмитриевич) — юрист и историк (1811-1874); первоначальное образование получил в Киевском духовном училище и Киевской духовной семинарии, высшее — в Главном педагогическом институте. По окончании философско-юридического отделения, И. вместе с другими был отправлен за границу для приготовления к профессорскому званию. По выдержании испытания на степень доктора российского законоведения, И., в звании адъюнкта, открыл в Киевском унив. чтения о государственном устройстве и благочини...
Игрицкий-Богородицкий Песошенский монастырь мужской, второклассный — Костромской губернии и уезда. До 1832 г. около монастыря, 29 июня, производились народные игры. В 1620 г. явилась здесь чудотворная икона Смоленской Божией Матери, а потому в 1624 г. здесь и выстроен м-рь. В м-ре находится чудотвор. образ св. Николая. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...
Латур Винценц Карл Макс (граф Vaillet de Latour) — внук генерала Теодора Л. (см.), убитого в 1848 г., австрийский политический деятель. Род. в 1848 г. В 1897—98 гг. был министром просвещения в кабинете Гауча; с 1900 г. член палаты господ. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон 1890—1907...