напыление вакуумное

НАПЫЛЕНИЕ ВАКУУМНОЕ

нанесение пленок или слоев на поверхность деталей или изделий в условиях вакуума (1,0-1∙10−7 Па). Н.в. используют в планарной технологии полупроводниковых микросхем, в производстве тонкопленочных гибридных схем, изделий пьезотехники, акустоэлектроники и др. (нанесение проводящих, диэлектрических, защитных слоев, масок и др.), в оптике (нанесение просветляющих, отражающих и др. покрытий), ограниченно — при металлизации поверхности пластмассовых и стеклянных изделий, тонировании стекол автомобилей. Методом Н.в. наносят металлы (Al, Au, Cu, Cr, Ni, V, Ti и др.), сплавы (напр., NiCr, CrNiSi), хим. соед. (силициды, оксиды, бориды, карбиды и др.), стекла сложного состава (напр., I2O3 ∙ В2O3 ∙ SiO2 ∙ Al2O3 ∙ CaO, Та2O • В2O3 ∙ I2O3 ∙ GeO2), керметы.

Н.в. основано на создании направленного потока частиц (атомов, молекул или кластеров) наносимого материала на поверхность изделий и их конденсации. Процесс включает неск. стадий: переход напыляемого вещества или материала из конденсир. фазы в газовую, перенос молекул газовой фазы к поверхности изделия, конденсацию их на поверхность, образование и рост зародышей, формирование пленки.

По способу перевода вещества из конденсированной в газовую фазу различают вакуумное испарение и ионное распыление. При и о н н о м р а с п ы л е н и и частицы наносимого вещества выбиваются с поверхности конденсир. фазы путем ее бомбардировки ионами низкотемпературной плазмы. Вариантами ионного распыления являются к а т о д н о е, м а г н е т р о н н о е, и о н н о-п л а з м е н н о е и в ы с о к о ч а с т о т н о е р а с п ы л е н и е, которые отличаются друг от друга условиями формирования и локализацией в пространстве низкотемпературной плазмы. Если распыление проводится в присутствии хим. реагентов (в газовой фазе), то на поверхности изделия образуются продукты их взаимод. с распыляемым веществом (напр., оксиды, нитриды). Такое распыление наз. р е а к т и в н ы м.

Перенос частиц напыляемого вещества от источника (места его перевода в газовую фазу) к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10−2 Па и ниже (вакуумное испарение) и путем диффузионного и кон-вективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10−1–10−2 Па (магнетронное и ионно-плазменное распыление). Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и хим. сродства материалов пленки и детали. Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация). При высоких энергиях частиц, большой температуре поверхности и малом хим. сродстве частица отражается поверхностью. Температура поверхности детали, выше которой все частицы отражаются от нее и пленка не образуется, наз. к р и т и ч е с к о й температур о й Н.в.; ее значение зависит от природы материалов пленки и поверхности детали и от состояния поверхности. При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т. е. пленка не растет. К р и т и ч е с к о й п л о т н о с т ь ю потока испаряемых частиц для данной температуры поверхности наз. наименьшая плотность, при которой частицы конденсируются и формируют пленку.

Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления. Пленки м. б. аморфными (стеклообразными, напр. оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (напр., полупроводниковые пленки, полученные молекулярно-лучевой эпитаксией). Для упорядочения структуры и уменьшения внутр. мех. напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, неск. превышающих температуру поверхности при напылении. Часто посредством Н.в. создают многослойные пленочные структуры из разл. материалов.

Вакуумно-напылительные установки. Для Н.в. используют технол. оборудование периодич., полунепрерывного и непрерывного действия. У с т а н о в к и п е р и о д и ч е с к о г о д е й с т в и я осуществляют один цикл нанесения пленок при заданном числе загружаемых изделий. У с т а н о в к и н е п р ер ы в н о г о д е й с т в и я используют при серийном и массовом производстве. Они бывают двух видов-многокамерные и многопозиционные однокамерные. Первые состоят из последовательно расположенных напылит. модулей, в каждом из которых осуществляется напыление пленок определенных материалов или их термич. обработка и контроль. Модули объединены между собой шлюзовыми камерами и транспортирующим конвейерным устройством. Многопозиционные однокамерные установки содержат неск. напылительных постов (расположенных в одной вакуумной камере), соединяемых транспортным устройством конвейерного или роторного типа.

Осн. узлы и системы установок для Н.в. представляют собой самостоят. устройства, выполняющие заданные функции: создание вакуума, испарение или распыление материала пленок, транспортировку деталей, контроль режимов Н.в. и свойств пленок, электропитание и др. Обычно установка для Н.в. включает след. узлы: рабочую камеру, в которой осуществляется напыление пленок; источники испаряемых или распыляемых материалов с системами их энергопитания и устройствами управления; откачную и газораспределительную системы, обеспечивающие получение необходимого вакуума и организацию газовых потоков (состоят из насосов, натекателей, клапанов, ловушек, фланцев и крышек, средств измерения вакуума и скоростей газовых потоков); систему электропитания и блокировки всех устройств и рабочих узлов установки; систему контроля и управления установкой Н.в., обеспечивающую заданные скорость напыления, толщину пленок, температуру поверхности деталей, температуру отжига, физ. свойства пленок (содержит набор датчиков, связанных через управляющую микропроцессорную ЭВМ с исполнит. механизмами и устройствами вывода информации); транспортирующие устройства, обеспечивающие ввод и вывод деталей в рабочую камеру, точное размещение их на постах напыления и перевод из одной позиции напыления на другую при создании многослойной системы пленок; систему вспомогат. устройств и технол. оснастку (состоят из внутрикамерных экранов, заслонок, манипуляторов, гидро- и пневмоприводов, устройств очистки газов).

Лит.: Технология тонких пленок. Справочник, под ред. Л. Майссела, Р. Глэнга, пер. с англ., т. 1–2, М., 1977; Плазменная металлизация в вакууме, Минск, 1983; Черняев В.Н., Технология производства интегральных микросхем и микропроцессоров, 2 изд., М., 1987; Волков С. С., Гирш В. И., Склеивание и напыление пластмасс, М., 1988; Коледов Л. А., Технология и конструкция микросхем, микропроцессоров и микросборок, М., 1989.

Л. А. Коледов

Источник: Химическая энциклопедия на Gufo.me