радиационная стойкость

РАДИАЦИОННАЯ СТОЙКОСТЬ

способность материалов сохранять исходный хим. состав, структуру и свойства в процессе и (или) после воздействия ионизирующих излучений (ИИ).

Р. с. существенно зависит от вида радиации, величины и мощности поглощенной дозы, режима облучения (непрерывное или импульсное, кратковременное или длительное), условий эксплуатации материала (температура, высокое давление, мех. нагрузки, магнитное или электрич. поле), размеров образца материала, его уд. поверхности и др. факторов. На практике изменение свойств материала сопоставляется с величиной, характеризующей величину воздействующего излучения, напр. с потоком (флюенсом) нейтронов или поглощенной дозой ИИ. Количеств. характеристикой часто служит также макс. (предельное) значение поглощенной дозы и (или) мощности поглощенной дозы излучения, при котором материал становится непригодным для конкретных условий применения или до заданной степени меняет значение к.-л. характерного параметра. Обычно проводят ускоренные радиац. испытания в лаб. условиях, имитирующих эксплуатационные.

Возникающие в результате радиац.-индуцир. процессов ионы и своб. электроны могут участвовать в сложных цепях физ.-хим. превращений (образование новых молекул и своб. радикалов, изменение кристаллич. структуры и др.), совокупно приводящих к изменению мех., электрич., мат., оптич. и др. свойств материалов. Изменения в материалах м. б. обратимыми или необратимыми и произойти как непосредственно вслед за радиац. воздействием, так и в течение длит, времени после акта облучения.

Радиац. стойкость неорг. веществ зависит от кристаллич. структуры и типа хим. связи. Наиб. стойки ионные кристаллы. Плотные структуры с высокой симметрией наиб. устойчивы к воздействию излучений. Для стекол характерно изменение прозрачности и появление окраски; возможна кристаллизация. Силикаты начинают изменять свойства после облучения флюенсом нейтронов ~1019 см−2. В результате облучения происходят: анизотропное расширение кристалла, аморфизация его структуры, уменьшение плотности, упругости, теплопроводности и др. свойств. Оксиды при облучении нейтронами меняют свои свойства аналогично силикатам. но в меньшей степени. В свойствах бетонов существ. изменения отсутствуют при облучении флюенсом нейтронов до 3∙1019см−2.

Свойства металлов изменяются в зависимости от повреждений кристаллич. решетки. Одиночные дефекты обычно упрочняют металл, но снижают его пластичность. Электрич. сопротивление металлов или сплавов возрастает за счет образования дефектов, хотя в сплавах возможно и уменьшение электрич. сопротивления, если радиац. воздействие приводит к упорядочению структуры. В полупроводниках всегда имеется некоторая равновесная при определенной температуре концентрация точечных дефектов. Под действием облучения она увеличивается, что приводит к изменению электрич. и оптич. свойств полупроводников.

Радиац. стойкость орг. материалов принято определять величиной радиац.-хим. выхода продуктов радиолиза, образующихся при поглощении 100 эВ энергии ИИ (см. радиационно-химический выход), Взаимод. ИИ с орг. соед. сопровождается образованием промежут. активных частиц, деструкцией, окислением, сшиванием, газообразованием, деполимеризацией (для полимеров) и т. д. Низкой радиац. стойкостью обладают вещества, содержащие связи С—F, С — Si, C—O. Наличие в молекуле двойных и сопряженных связей, ароматич. колец и гетероциклов увеличивает Р. с. Наиб. значит изменения структуры полимерных материалов под действием ИИ происходят при деструкции или сшивании молекул полимера.

Р с., в т. ч. полимеров, зависит и от количества растворенного в них O2 воздуха и скорости его поступления из окружающей среды; в его присутствии происходит радиац.-хим. окисление вещества. В результате этого существенно изменяются хим. и термич. стойкость веществ, предел прочности и модуль упругости, диэлектрич. проницаемость, электрич. прочность и электрич. проводимость

Обратимые изменения в орг. материалах обусловлены установлением стационарного равновесия между генерированием нестабильных продуктов радиолиза и их гибелью и зависят от мощности дозы. Так, электрич. сопротивление орг. изоляционных материалов с увеличением мощности дозы падает на неск. порядков. При больших дозах снижение остаточного электрич. сопротивления носит необратимый характер. У мн. полимерных материалов, облученных дозами до 106 Гр, исходная электрич. проводимость меняется в неск. раз. При дозе 104 Гр необратимые изменения, как правило, незначительны. В орг. полимерных материалах может возникать послерадиац. старение, которое обусловлено в осн. хим. реакциями образовавшихся своб. радикалов с O2 воздуха. Радиац. стойкость полимерных диэлектриков ограничивается, как правило, их мех. свойствами, т. к. они становятся хрупкими и теряют способность нести мех. нагрузки после доз, не вызывающих существ. изменений электрич. свойств.

В табл. приведены значения дозы облучения, вызывающие заметные (до 50%) изменения свойств некоторых материалов.

радиационная стойкость

Для повышения Р. с. обычно используют пассивную защиту (экранирование), физ.-хим. модификацию материала, радиац.-термич. обработку. Использование защитного экранирования снижает степень воздействия ИИ на материал. Таким путем в весьма широких пределах можно "повысить" стойкость любого материала. При физ.-хим. модификации в материал вводят добавки — напр. антиоксиданты или антирады; таким путем радиац. стойкость м. б. повышена в 7–20 раз. Предварительная радиац.-термич. обработка — облучение и отжиг — позволяет увеличить радиац. стойкость металлич. материалов в 10–50 раз.

Лит.: Радиационная стойкость материалов. Справочник, под ред. В. Б. Дубровского, М., 1973; Радиационное электроматериаловедение, М., 1979; Действие проникающей радиации на изделия электронной техники, под ред. Е. А. Ладыгина, М., 1980; Радиационная стойкость органических материалов. Справочник, под ред. В. К. Милннчука, В. И. Туликова, М., 1986; Вавилов B.C.. Кекелнд-зе Н.П., Смирнов Л. С., Действие излучений на полупроводники, М., 1988; Радиационная стойкость материалов атомной техники. Сб. трудов, под ред. Б. А. Калина, М., 1989.

Б. С. Сычев, В. К. Милинчук, Л. Н. Патрикеев

Источник: Химическая энциклопедия на Gufo.me