Математическая энциклопедия

Алгебраических Систем Класс

Алгебраических Систем Класс
АЛГЕБРАИЧЕСКИХ СИСТЕМ КЛАСС

класс однотипных алгебраических систем. Все системы любого данного типа предполагаются записанными в определенной сигнатуре и наз. -системами. Класс -систем наз. абстрактным, если он содержит вместе с каждой своей системой и все изоморфные ей -системы.

Пусть - абстрактный класс -систем. Говорят, что -система обладает локальной совокупностью -подсистем, если существует направленное по включению множество подсистем системы , к-рые покрывают систему (т. е. ) п принадлежат классу,. Класс наз. локальным, если каждая -система , обладающая локальной совокупностью -подсистем, принадлежит классу . Теоремы, устанавливающие локальность тех или иных абстрактных классов, принято наз. локальными (см. Мальцева локальные теоремы).

-система наз. -аппроксимируемой (или -резидуальной), если для любого предиката (т. е. для любого основного предиката, а также для предиката, совпадающего с отношением равенства в ) и для любых элементов а 1 . . ., а п из , для к-рых , существует гомоморфизм : системы в нек-рую систему нз класса , при к-ром снова Любая подсистема -аппроксимируемой системы сама -аппроксимируема. Если - класс всех конечных fi-систем, то -аппроксимируемая система наз. финитно аппроксимируемой (или резидуально конечной). Если абстрактный класс обладает единичной системой , то -система -аппроксимируема тогда и только тогда, когда она изоморфно вложнма в декартово произведение систем из класса (см. [3]). Класс наз. резидуальным, если всякая -аппроксимируемая система принадлежит классу . Класс наз. гомоморфно замкнутым, если он содержит с каждой своей -системой п все -системы, являющиеся гомоморфными образами системы . Всякий резидуальный гомоморфно замкнутый класс - локальный (см. [5]).

Класс -систем наз. (конечно) аксиоматизируемым, если существует такая (конечная) совокупность замкнутых формул 1-й ступени сигнатуры , что состоит из тех и только тех -систем, в к-рых истинны все формулы из .