Математическая энциклопедия

Автономная Система

Автономная Система
АВТОНОМНАЯ СИСТЕМА

обыкновенных дифференциальных уравнений - система обыкновенных дифференциальных уравнений, в к-рую не входит явно независимое переменное t(время). Общий вид А. с. 1-го порядка в нормальной форме:


или, в векторной записи,


Неавтономная система сводится к А. с., если ввести новую неизвестную функцию Исторически А. с. возникли при описании физич. процессов с конечным числом степеней свободы. А. с. наз. также динамическими, или консервативным и (см. Динамическая система).

Комплексная А. с. вида (1) эквивалентна вещественной А. с. с 2n неизвестными функциями


Содержательная теория комплексных А. с., отличная от вещественного случая, имеет место в случае аналитических (см. Аналитическая теория дифференциальных уравнений).

Будем рассматривать А. с. с действительными коэффициентами и их действительные решения. Пусть - (произвольное) решение А. с. (1), - интервал его определения,- решение с начальными данными Пусть - область в и Точка наз. положением равновесия (точкой покоя) А. с. (1), если Положению равновесия отвечает решение

Локальные свойства решений.

1) Если - решение, то - решение при любом

2) Существование: при любых решение существует на нек-ром интервале

3) Гладкость: если то

4) Зависимость от параметров: пусть если (подробнее см. [1] - [4]).

5) Пусть не является положением равновесия, тогда существуют окрестности F, Wточек соответственно, и диффеоморфизм такие, что А. с. имеет вид в W.

Замена переменных в А. с. (1) приводит к системе


( - Якоби матрица).

Глобальные свойства решений.

1) Любое решение А. с. (1) можно продолжить на интервал . Если , то решение наз. неограниченно продолжаемым; если то решение наз. неограниченно продолжаемым "в перед повремени" (аналогично - "назад"). Если то для любого компакта существует = такое, что точка находится вне при (аналогично при ; см. Продолжаемость решений дифференциальных уравнений).

2) Продолжение единственно в том смысле, что любые два решения с общими начальными данными совпадают на общей области их определения.

3) Всякое решение А. с. принадлежит к одному из трех типов: а) непериодическое, причем для любых ) периодическое, непостоянное; с) .

Геометрическая интерпретация А. с. Каждому решению ставится в соответствие кривая Г: лежащая в области G. Тогда Gназ. фазовым пространством А. с., Г - фазовой траекторией, решение интерпретируется как движение по фазовой траектории. Фазовым потоком наз. отображение : по формуле (т. е. каждая точка сдвигается за время tвдоль фазовой траектории). На своей области определения фазовый поток удовлетворяет условиям: 1) непрерывно по 2) справедливо групповое свойство:

Имеет место теорема Лиувилля: пусть - область с конечным объемом, - объем области тогда


Для гамильтоновой системы из (3) следует сохранение фазового объема фазовым потоком. Другой вариант равенства (3): пусть - семейство решений А. с. (1), - область, тогд