Даниеля Интеграл

Расширение понятия интеграла, предложенное П. Даниелем [1]. Схема построения этого интеграла наз. схемой Даниеля, представляет собой продолжение на более широкий класс функций интеграла, определенного первоначально для нек-рой совокупности функций, называемых элементарными функциями. При сохранении способа продолжения изменение объема исходной совокупности элементарных функций приводит к разным расширениям понятия интеграла. В этой схеме аксиоматизируется понятие элементарного интеграла, в отличие от схемы Лебега (см. Лебега интеграл), аксиоматизирующей понятие меры. Пусть X- произвольное множество и L0- некоторая совокупность определенных на Xдействительных ограниченных функций; эти функции наз. элементарными. Предполагается, что L0- векторная решетка, т. наз. интегралом от f. Интеграл I(f) не зависит от выбора аппроксимирующей последовательности . Классом Lназ. совокупность функций f, определенных на Xи представимых в виде f=f1-f2, где . Функции класса Lназ. суммируемыми, а число- интегралом Даниеля от функции f. Класс Lс точностью до множества меры нуль является векторной решеткой конечных функций, замкнутой относительно сходимости почти всюду с ограниченными интегралами, и Д. и. от суммируемых функций обладает свойствами дистрибутивности, неотрицательности, непрерывности (относительно сходимости почти всюду), мажорированной суммируемой функцией (теорема Лебега о переходе к пределу под знаком интеграла), а также рядом других естественных свойств интеграла. В том случае, когда Х=[ а, b]и L0 есть совокупность ступенчатых функций Д. и. совпадает с интегралом Лебега от функций, суммируемых на [ а, b]. Схема Даниеля применима для построения интеграла от функций со значениями в s-полной решетке. Лит.:[1] Daniеll P., "Ann. Math.", 1917, v. 19, p. 279 -94; [2] Шилов Г. Е., Гуревич Б. Л., Интеграл, мера и производная, 2 изд., М., 1967; [3] Люмис Л., Введение в абстрактный гармонический анализ, пер. с англ., М., 1956. В. И. Соболев.

Источник: Математическая энциклопедия на Gufo.me