Геометрия

Часть математики, первоначальным предметом к-рой являются пространственные отношения и формы тел. Г. изучает пространственные отношения и формы, отвлекаясь от прочих свойств реальных предметов (плотность, вес, цвет и т. д.). В последующем развитии предметом Г. становятся также идругие отношения и формы действительности, сходные с пространственными. В современном общем смысле Г. объемлет любые отношения и формы, к-рые возникают при рассмотрении однородных объектов, явлений, событий вне их конкретного содержания и к-рые оказываются сходными с обычными пространственными отношениями и формами. Напр., рассматривают расстояния между функциями, отвлекаясь от того, каковы специальные свойства этих функций и какие реальные процессы эти функции описывают (см., напр., Метрическое пространство, Функциональный анализ). Исторический очерк. Возникновение Г. относится к глубокой древности. Оно было обусловлено практик, потребностями (измерением земельных участков, объемов тел). Простейшие геометрия, сведения и понятия были известны еще древним египтянам (нач. 2-го тыс. до н. э.). Геометрич. утверждения формулировались тогда в виде правил, логич. доказательства к-рых либо отсутствовали, либо были примитивными. Начиная с 7 в. до н. э. и до 1 в. н. э., развитие Г. происходило в основном в Др. Греции. Здесь накапливались сведения о метрич. соотношениях в треугольниках, измерениях площадей и объемов, пропорциях и подобии фигур, конич. сечениях, задачах на построение. В то время появились уже сравнительно строгие логич. доказательства геометрич. утверждений. Собранием известных фактов Г. и их логической систематизацией явились "Начала" Евклида (ок. 300 до н. э.). В этом сочинении были сформулированы основные положения (аксиомы) Г., из к-рых при помощи логич. рассуждений выводились различные свойства простейших фигур на плоскости и в пространстве. Здесь впервые сложились основы аксиоматич. метода. Развитие астрономии и геодезии (1 — 2 вв. н. э.) привело к созданию плоской и сферич. тригонометрии. Дальнейшее развитие Г., вплоть до 17 в., происходило не столь интенсивно. Возрождение наук и искусств в Европе способствовало развитию Г. Теория перспективы, задача к-рой состояла в изображении тел на плоскости (см. Начертательная геометрия), была в центре внимания художников и архитекторов. Эта потребность привела к зарождению проективной геометрии — раздела Г., в к-ром изучаются свойства фигур, инвариантные относительно так наз. проективных преобразований. Совершенно новый подход к решению геометрнч. вопросов был предложен в 1-й пол. 17 в. Р. Декартом (R. Descartes). Им был создан метод координат, позволивший привлечь в Г. методы алгебры, а в последующем и анализа. Начиная с этого момента Г. бурно развивается. Появляется аналитическая геометрия, в к-рой методами алгебры исследуются кривые и поверхности, задаваемые алгебраич. уравнениями. Применение в 18 в. Л. Эйлером (L. Euler) и Г. Монжем (G. Monge) методов математич. анализа в Г. заложило основы классической дифференциальной геометрии. Ее ведущие разделы: теория кривых и теория поверхностей- интенсивно развивались и обобщались в работах К. Гаусса (С. Gauss) и др. геометров. В результате взаимодействия Г. с алгеброй и анализом в дальнейшем возникли специальные исчисления, удобные для использования в Г. и др. разделах математики ( векторное исчисление, тензорное исчисление, метод дифференциальных форм). Разделы Г., не опирающиеся на методы алгебры и анализа и оперирующие непосредственно с геометрич. образами, получили назв. синтетической геометрии. Предмет, основные разделы геометрии, связь с другими областями математики. Свои первоначальные шаги Г. делала как физич. наука, ее первые результаты описывали свойства физически наблюдаемых величин. Затем, до 2-й пол. 19 в., предметом Г. были отношения и формы тел пространства, свойства к-рого определялись аксиомами, сформулированными Евклидом (см. Евклидова геометрия). Пространство Евклида столь хорошо отражает простейшие физич. наблюдения, что до 19 в. оно как бы отождествлялось с физич. пространством. В 1826 Н. И. Лобачевский построил Г. (см. Лобачевского геометрия), в основу к-рой была положена система аксиом, отличающаяся от системы аксиом Евклида только аксиомой о параллельных прямых. В результате появилась логически непротиворечивая Г., существенно отличная от евклидовой. Стало ясно, что в математике возможно построение разнообразных пространств с содержательной Г. (см., напр., Неевклидовы геометрии). Наряду с этим сложилась идея многомерного пространства. Следующим новым шагом в Г. была идея Б. Римана (В. Riemann), к-рый в 1854 сформулировал обобщенное понятие пространства как непрерывной совокупности любых однородных объектов или явлений и ввел пространства, измерение расстояний (метрика) в к-рых производится по нек-рому заданному закону "бесконечно малыми шагами". Иными словами, задается определенная функция, к-рая выражает длину пути точки через диффередциалы координат при малом ее смещении. Развитие идеи Римана привело к дальнейшим разнообразным обобщениям способов задания метрики и рассмотрению Г. соответствующих пространств (см. Риманово пространство, Финслеррво пространство). При исследовании физич. пространства, различных меха-нич. систем или вообще систем каких-либо однородных физич. объектов выбор подходящего математич. пространства и сопоставление его элементов-объектам изучаемой системы зависят от характера этой .системы. Качество такого математич. моделирования проверяется опытом. Разные объекты или одни и те же объекты при разной детальности исследования могут требовать разных пространств. В общей физич. теории пространства-времени-тяготения (см. Относительности теория).используется одна из разновидностей римановой Г. Одним из стимулов развити-я и систематизации Г. явилась ее связь с теорией групп. Ф. Клейн (F. Klein) в эрлангенской программе(1872) так определил содержание Г.: дано многообразие и в нем группа преобразований. Требуется развить теорию инвариантов этой группы. Напр., теория инвариантов ортогональной группы определяет евклидову Г. В такую классификацию хорошо укладываются также аффинная геометрия, конформная геометрия, проективная геометрия. Но риманова Г. не может быть определена таким образом. В связи с этим Э. Картан (Е. Cartan) ввел пространства, в к-рых соответствующая группа преобразований действует только локально, в бесконечно малой окрестности; таковы римановы пространства и пространства с различной связностью. Групповой подход с точки зрения непрерывных групп преобразований был предложен С. Ли (S. Lie). Параллельно в конце 19 в. развивался логич. анализ основ Г. Выяснение непротиворечивости, минимальности и полноты систем аксиом Г. суммировано Д. Гильбертом (D. Hilbert) в книге "Основания геометрии" (1899) (см. Основания геометрии). Современное понимание пространства как непрерывной совокупности однородных объектов (явлений, состояний, фигур, функций) обусловлено глубокой взаимосвязью Г. с другими областями математики. Наиболее отчетливо эта связь проявилась в развитии Г. в 20 в., когда Г. стала широко разветвленной, а ее границы в связи с усилением единства математики стали менее четкими. Теперь пространство в математике понимается как множество, снабженное нек-рой структурой, т. е. нек-рыми отношениями между его элементами или подмножествами. Изучение простейшей весьма общей структуры, позволяющей говорить о непрерывности, привело к выделению из Г. большой самостоятельной части математики — топологии. Г. предполагает наличие более богатых структур. При использовании аналитич. аппарата дополнительные структуры (связности, метрики, конформные и симплектич. структуры и т. п.) задают обычно с помощью тензорных (в частности — векторных) или иных полей. Исследование ряда геометрич. структур относится и к другим частям математики. Это связано с преобладающим методом исследования. Так, алгебраическая геометрия изучает алгебраич. многообразия и связанные с ними алгебраич. и арифметич. проблемы. Алге-браизация геометрич. закономерностей позволяет строить Г. над произвольными полями (в том числе над конечными — конечные Г.). Эти разделы — части алгебры. Бесконечномерные пространства изучаются в функциональном анализе. Однако во всех этих областях математики остается полезным геометрич. способ мышления, при к-ром непосредственно оперируют наглядными образами, без перехода к исчислениям. Наиболее традиционным предметом Г. остаются пространства, являющиеся многообразиями с той или иной дополнительной структурой, многообразия различных фигур, в частности — подмногообразий в них и полей разного рода объектов на многообразиях. Многие разделы Г. можно'характеризовать типом пространств и типом объектов в них, являющихся предметом исследования. Напр., глобальная Г. дифференцируемых многообразий изучает многообразия с гладкими структурами, гладкие многообразия и гладкие поля на них, причем изучает их в целом, на полных многообразиях. в целом изучает сходные вопросы для кривых и поверхностей при допущении негладкости и особенностей; она ведет свое начало от теории выпуклых тел, основы к-рой были заложены Г. Минковским (Н. Minkowski). В интегральной геометрии исследуются меры на совокупностях геометрич. объектов. Комбинаторная геометрия изучает расположения геометрич. фигур топологич. и метрич. средствами (напр., плот-нейшие упаковки и редчайшие покрытия) в евклидовом, гиперболич. и эллиптич. пространствах разного числа измерений. Развитие Г., ее приложения, развитие геометрич. восприятия абстрактных объектов в различных областях математики и естествознания свидетельствуют о важности Г. как одного из самых глубоких и плодотворных по идеям и методам средств познания действительности. Лит.: [1] Александров А. Д., , БСЭ, 3 изд., т. 6; [2] Математика, ее содержание, методы и значение, М., 1956, т. 1, с. 5-69, 180-245; т. 2, с. 97-144; [3] Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; [4] Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; [5] Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., М.- Л., 1937; [6] Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; [7] Гильберт Д., Основания геометрии, пер. с нем., М.- Л., 1948; [8] Об основаниях геометрии, М., 1956; [9] Ефимов Н. В., Высшая геометрия. 5 изд., М., 1971; [10] Клейн Ф., Высшая геометрия, пер. с нем., М.-Л., 1939. См. также лит. при статьях об отдельных геометрических дисциплинах. Э. Г. Позняк.

Источник: Математическая энциклопедия на Gufo.me


Значения в других словарях

  1. геометрия — -и, ж. Раздел математики, изучающий пространственные формы и отношения тел. [греч. γεωμετρία] Малый академический словарь
  2. Геометрия — (греч. geometria, от ge — Земля и metreo — мерю) раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Происхождение термина «Г. Большая советская энциклопедия
  3. геометрия — орф. геометрия, -и Орфографический словарь Лопатина
  4. Геометрия — • Geometria см. Mathematica, Математика. Словарь классических древностей
  5. геометрия — Гео/ме́тр/и/я [й/а]. Морфемно-орфографический словарь
  6. геометрия — Др.-рус. заимств. из греч. яз., в котором geōmetria — сложносуффиксальное образование на базе gē «земля» и metreō «мерить». Этимологический словарь Шанского
  7. ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры. Научно-технический словарь
  8. геометрия — ГЕОМЕТРИЯ -и; ж. [греч. gē — Земля и metreō — измеряю]. Раздел математики, изучающий пространственные формы и отношения. // Учебный предмет, излагающий этот раздел математики. Урок геометрии. Преподаватель геометрии. // Разг. Учебник по этому предмету. Толковый словарь Кузнецова
  9. геометрия — ГЕОМЕТРИЯ, и, ж. Раздел математики, изучающий пространственные отношения и формы. | прил. геометрический, ая, ое. Толковый словарь Ожегова
  10. геометрия — См. геогения Толковый словарь Даля
  11. геометрия — Геометрии, мн. нет, ж. [гео и metreo – измеряю]. Отдел математики, в к-ром изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами алгебры и анализа). Большой словарь иностранных слов
  12. геометрия — ГЕОМ’ЕТРИЯ, геометрии, мн. нет, ·жен. (от ·греч. ge — земля и metreo — измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Толковый словарь Ушакова
  13. геометрия — геометрия I ж. 1. Раздел математики, изучающий пространственные формы и способы их измерения. 2. Учебный предмет, содержащий теоретические основы данного раздела математики. 3. разг. Учебник, излагающий содержание данного учебного предмета. II ж. Очертания, контуры чего-либо. Толковый словарь Ефремовой
  14. ГЕОМЕТРИЯ — ГЕОМЕТРИЯ (от гео... и...метрия) — раздел математики, в котором изучаются пространственные отношения (напр., взаимное расположение) и формы (напр., геометрические тела) и их обобщения. Большой энциклопедический словарь
  15. геометрия — геоме́трия геоме́тр, геометрист (в эпоху Петра I; см. Смирнов 88). Первонач. через польск. geometria или прямо из лат. geometria; см. еще Горяев, ЭС 445 [у которого прямо из греч. – Ред.]; геометрист, возм., через польск. geometrysta. Этимологический словарь Макса Фасмера
  16. Геометрия — (γήμετρώ — земля, μετρώ — мерю). — Понятия о пространстве, положении и форме принадлежат к числу первоначальных, с которыми человек был знаком уже в глубокой древности. Первые шаги в Г. были сделаны египтянами и халдеями. В Греции... Энциклопедический словарь Брокгауза и Ефрона