Лапласа Уравнение

Однородное дифференциальное уравнение с частными производными вида где — функция от пдействительных переменных. Левая часть Л. у. наз. Лапласа оператором от функции и. Регулярные решения Л. у. класса С 2 в нек-рой области Dевклидова пространства т. е. решения, имеющие непрерывные частные производные до 2-го порядка в D, наз. гармоническими функциями в D. Л. у. является основным представителем дифференциальных уравнений с частными производными 2-го порядка эллиптич. типа, на к-ром вырабатывались и вырабатываются основные методы решения краевых задач для эллиптических уравнений. Пусть v — потенциальное векторное поле в D, т. е. v=-grad и, где м=и(х 1, х 2, ..., хД) — потенциал. Так как то физич. смысл Л. у. состоит в том, что оно выполняется для потенциала любого такого поля в областях D, свободных от источников поля. Напр., Л. у. удовлетворяет гравитационный потенциал сил тяготения в областях, свободных от притягивающих масс, потенциал электростатич. поля в областях, свободных от зарядов, и т. д. Таким образом, Л. у. выражает закон сохранения для потенциального поля. С этой точки зрения форма (1) Л. у. получается при выборе декартовой прямоугольной системы координат; в других системах координат оператор Лапласа и Л. Л. у. встречается у Л. Эйлера и Ж. Д'Аламбера (см. [1], [2]) в связи с задачами гидромеханики и первоначальным рассмотрением функций комплексного переменного. Однако широкую известность оно получило после появления работ П. Лапласа (см. [3], [4]) по теории гравитационного потенциала и небесной механике. Уравнение (1) иногда наз. скалярным Л. у. в отличие от в е к т о р н о г о Л. у. В случае, напр., векторного поля заданного в прямоугольной декартовой системе координат пространства векторное Л. у. (2) равносильно трем скалярным Л. у. для каждой из компонент В других системах координат векторное Л. у. равносильно системе трех уравнений с частными производными 2-го порядка относительно компонент векторного поля v, получающейся из (2) после выполнения указанных там операций векторного анализа в соответствующих координатах (см. [7]). Лит.:[1] Е u l е r L., "Novi Commentarii Acad. Sci. Petropolitanae", 1761, t. 6; [2] D'A 1 e m b e r t J. le R о n d, Opuscules mathematiques, t. 1, P., 1761; [3] L a p 1 а с e P. S., "Mem. Acad. Paris (1782)", 1785; [4] e г о же, TraitcS lie mecanique celeste, t. 2, P., 1799; [5] Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971; [6] М а р к у ш е в и ч А. И., Теория аналитических функций, 2 изд., т. 2, М., 1968; [7] Морс Ф. М., Ф е ш б а х Г., Методы теоретической физики, пер. с англ., т. 2, М., 1960. Е. Д. Соломенцев.

Источник: Математическая энциклопедия на Gufo.me


Значения в других словарях

  1. ЛАПЛАСА УРАВНЕНИЕ — Дифференциальное ур-ние с частными производными где u(х, у, z) — ф-ция независимых переменных х, у, z. Названо по имени франц. учёного П. Лапласа, применившего его в работах по тяготению (1782). К Л. у. приводят мн. задачи физики и механики, в к-рых физ. Физический энциклопедический словарь
  2. Лапласа уравнение — Дифференциальное уравнение с частными производными где х, у, z — независимые переменные, а u = u(x, y, z) — искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. Большая советская энциклопедия
  3. ЛАПЛАСА УРАВНЕНИЕ — ЛАПЛАСА УРАВНЕНИЕ — дифференциальное уравнение с частными производными 2-го порядкагде, x, y, z — независимые переменные, ?(x, y, z) — искомая функция. Рассмотрено П. Лапласом (1782). К уравнению Лапласа приводят многие задачи математической физики (напр. Большой энциклопедический словарь