Антифрикционные материалы

Антифрикцио́нные материалы

(от Анти... и лат. frictio — трение)

материалы, применяемые для деталей машин (подшипники, втулки и др.), работающих при трении скольжения и обладающих в определённых условиях низким коэффициентом трения. Отличаются низкой способностью к адгезии (См. Адгезия), хорошей прирабатываемостью, теплопроводностью и стабильностью свойств. В условиях гидродинамической смазки, когда детали (не деформирующиеся под влиянием давления в смазочном слое) полностью разделены сравнительно толстым слоем смазочного материала, свойства материала этих деталей не оказывают влияния на трение. Антифрикционность материалов проявляется в условиях несовершенной смазки (или при трении без смазки) и зависит от физических и химических свойств материала, к которым относятся: высокие теплопроводность и теплоёмкость; способность образовывать прочные граничные слои, уменьшающие трение; способность материала легко (упруго или пластически) деформироваться или изнашиваться, что способствует равномерному распределению нагрузки по поверхности соприкосновения (свойство прирабатываемости). К антифрикционности относятся также микрогеометрическое строение поверхности, а именно определённая степень шероховатости или пористости, при которых масло удерживается в углублениях, и способность материала «поглощать» твёрдые абразивные частицы, попавшие на поверхность трения, предохраняя тем самым от износа сопряжённую деталь. Проявлению антифрикционности в условиях сухого трения способствует наличие в материале таких компонентов, которые, сами обладая смазочным действием и присутствуя на поверхности трения, обеспечивают низкое трение (например, графит, дисульфид молибдена и др.). Одним из важных свойств А. м., обусловливающих антифрикционность при всех условиях трения, является его неспособность или малая способность к «схватыванию» (адгезии) с материалом сопряжённой детали. Наиболее склонны к «схватыванию» при трении одноимённые пластичные металлы в паре, имеющие гранецентрированную и объёмноцентрированную кубической решётки. При трении по стали наименее склонны к «схватыванию» серебро, олово, свинец, медь, кадмий, сурьма, висмут и сплавы на их основе.

Наиболее распространены как А. м. подшипниковые материалы (ПМ), применяемые для подшипников скольжения. Кроме антифрикционных свойств, они должны обладать необходимой прочностью, сопротивлением коррозии в среде смазки, технологичностью и экономичностью. Вследствие различия в требованиях к материалу подшипника, образующему поверхность трения (антифрикционность), и к остальной части подшипника (достаточная прочность) получили распространение ПМ и подшипники, у которых основа состоит из прочного конструкционного материала (например, стали), а поверхность трения — из слоя А. м. (например, баббита). А. м. наносится литейным способом на заготовку подшипника или на непрерывно движущуюся стальную ленту; из полученной биметаллической калиброванной ленты (см. Биметалл) подшипники (вкладыши и втулки) изготовляются штамповкой.

ПМ делятся на металлические и неметаллические. К металлическим ПМ относятся: сплавы на основе олова, свинца, меди, цинка, алюминия, а также некоторые чугуны; к неметаллическим ПМ — некоторые виды пластмасс, материалы на основе древесины, графито-угольные материалы, резина. Некоторые ПМ представляют собой сочетание металлов и пластмасс (например, пористый слой, образованный спечёнными бронзовыми шариками, пропитанный фторопластом-4 или фторопластом-4 с наполнителями).

ПМ на основе олова или свинца (баббиты) применяются в подшипниках в виде слоя, залитого по стали (иногда по бронзе). Прочное сцепление достигается специальной очисткой стали; возможна также наплавка баббита (для больших подшипников) и заливка им поверхности подшипника, имеющего углубления или пазы для лучшего сцепления. Подшипники автомобилей изготовляются штамповкой из биметаллической ленты стальбаббит.

ПМ на медной основе — бронзы оловянистые, оловянно-свинцовистые, свинцовистые, некоторые безоловянные, а также некоторые латуни. Для наиболее напряжённых подшипников двигателей внутреннего сгорания применяются свинцовистые пластичные бронзы (25% свинца и более) в виде тонкого слоя, залитого по стали.

ПМ на цинковой основе (см. Цинковые сплавы) служат заменителями бронзы, например сплав ЦАМ 9—1,5 применяется в подшипниках паровозов как для изготовления вкладышей целиком, так и для заливки по стали; известен также метод плакирования (См. Плакирование) стали этим сплавом при производстве биметаллической ленты прокаткой.

ПМ на основе алюминия (см. Алюминиевые сплавы), широко применяемые для подшипников двигателей внутреннего сгорания, можно подразделить на 2 группы по степени пластичности (оцениваемой по твёрдости). По сравнению с баббитами пластичные алюминиевые сплавы обладают более высокой теплопроводностью и лучшими механическими свойствами при повышенных температурах; они гораздо дешевле, но хуже прирабатываются, менее способны «поглощать» твёрдые частицы и несколько сильнее изнашивают сопряжённый стальной вал. Их свойства улучшают нанесением на рабочую поверхность тонкого (25 мкм) слоя оловянно-свинцовистого сплава. Наиболее высокими антифрикционными свойствами обладает алюминиевый сплав с 20% олова, с микроструктурой, полученной в результате пластического деформирования и отжига. Сплавы с твёрдостью HB < 350 Мн/м2 (35 кгс/мм2) применяют для производства путём совместной прокатки со сталью биметаллических лент или полос, из которых в последующем штампуют вкладыши подшипников. Сплавы с более высокой твёрдостью (HB = 450 Мн/м2, или 45 кгс/мм2) применяют для изготовления подшипников дизелей.

Серый перлитный чугун при определённой микроструктуре (перлит средне- или крупнопластинчатый, графит средней крупности, фосфидная эвтектика в виде изолированных включений) обладает антифрикционными свойствами и используется для подшипников, работающих при невысоких нагрузках и малых скоростях.

ПМ на основе пластмасс с наполнителями из ткани (текстолит) древесного шпона, древесной крошки с успехом применяют в подшипниках, обильно смачиваемых водой, при невысоких частотах вращения вала. Всё большее распространение как ПМ получают пластмассы (полиамиды, политетрафторэтилен и др.), работающие со смазкой маслом или водой. Полиамиды используют также в виде тонкого покрытия (например, 0,3 мм) по металлической основе подшипника, что повышает допустимую нагрузку. Режим работы подшипников из пластмасс ограничивается температурой на поверхности трения (например, для полиамидов не более 80—100°C). Особенность некоторых подшипников из полиамидов — почти полное отсутствие изнашивания сопряжённого стального вала. Наилучшей антифрикционностью по сравнению с другими пластмассами при малой скорости скольжения без смазки обладает Фторопласт-4, причём низкое трение сохраняется у него в широком интервале рабочих температур от —200°С до 260°C.

ПМ на основе древесины. В качестве ПМ в основном используют натуральную древесину и прессованную древесину, древеснослоистые пластики. Пример натурального ПМ — гваяковое или бакаутовое дерево, применяемое при смазке водой. ПМ на основе древесины используют при обильной смазке водой в подшипниках прокатных станов, водяных турбин, валов корабельных винтов.

Графито-угольные ПМ представляют собой продукты прессования и термической обработки смеси нефтяного кокса и каменноугольной смолы с небольшим количеством натурального графита. Применяются как ПМ для работы без смазки при невысоких удельных нагрузках, температуре до 480°С, в воздушной среде. Изготовляются также графито-угольные ПМ, пропитанные жидкими металлами или смолой.

Резину как ПМ используют при хорошей смазке водой, малых удельных нагрузках и небольших скоростях скольжения. Режим работы ограничивается температурой на поверхности трения 50—70 °С.

Металло-керамические самосмазывающиеся ПМ применяют в виде пористых втулок (главным образом малого размера, работающих при низких скоростях без подвода смазки извне). Изготовляются спеканием предварительно спрессованных заготовок из порошков оловянистой бронзы (10% Sn) с примесью графита или железа с графитом. Степень пористости — около 25%. Втулки пропитываются маслом.

Лит.: Хрущов М. М., Современные теории антифрикционности подшипниковых сплавов, в кн.: Трение и износ в машинах, сб. 6, М.—Л., 1950; Петриченко В. К., Антифрикционные материалы и подшипники скольжения. Справочник, М., 1954; Шпагин А. И., Антифрикционные сплавы, М., 1956; Буше Н. А., Подшипниковые сплавы для подвижного состава, М., 1967.

М. М. Хрущов.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. антифрикционные материалы — АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ (от греч. anti- — приставка, обозначающая противодействие, и лат. frictio — трение) обладают низким коэф. Химическая энциклопедия
  2. АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ — АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ (от анти... и лат. frictio — трение) — обладают низким коэффициентом трения и применяются для изготовления деталей, работающих главным образом в условиях трения скольжения (подшипники, втулки, вкладыши и т. д.). Большой энциклопедический словарь