Радиационная безопасность

I

Радиационная безопасность

комплекс научно обоснованных мероприятий по обеспечению защиты человека, популяции в целом и объектов окружающей среды от вредного воздействия ионизирующих излучений (Ионизирующие излучения). Эти мероприятия направлены на создание безопасных условий применения атомной энергии и источников ионизирующих излучений в различных сферах человеческой деятельности.

Важной задачей Р. б. является разработка критериев оценки опасности различных видов ионизирующих излучений. Она решается путем анализа результатов радиобиологических экспериментов, цель которых — изучение влияния различного вида ионизирующих излучений на живой организм и отдельные системы, а также получение данных о состоянии здоровья людей, работающих в условиях воздействия ионизирующих излучений или подвергшихся непредвиденному облучению при радиационной аварии. Наиболее существенным в этом вопросе является установление количественной связи между уровнем облучения и эффектом, обусловленным ионизирующим излучением. Для этого разработана система оценки уровня облучения и методов его измерения при различных путях радиационного воздействия (см. Дозиметрия ионизирующих излучений). В качестве параметра, характеризующего выраженность эффекта, используют эквивалентную дозу (см. Доза ионизирующего излучения). На основе принятых критериев опасности разработана система допустимых пределов воздействия ионизирующих излучений, оформляемых в виде законодательных документов, в частности норм радиационной безопасности (см. Допустимые уровни облучения).

Другой не менее важной задачей Р. б. является разработка методов оценки и прогнозирования радиационной обстановки с целью обеспечения нормальных условий труда и жизни населения, а также защиты объектов окружающей среды от воздействия ионизирующих излучений при использовании атомной энергии. Сюда входят: характеристика источников излучения, которые могут воздействовать на персонал и население при различных аспектах использования атомной энергии и на разных этапах технологического процесса; исследование изменений уровней ионизирующих излучений в зависимости от условий их использования и режимов работы: изучение закономерности распространения радиоактивных веществ, характера и масштабов их воздействия на персонал, население и объекты окружающей среды при нормальных условиях работы и возникновении аварийных ситуаций. Все это необходимо для обоснованного выбора средств и методов индивидуальной и групповой защиты (см. Противолучевая защита), оптимальных режимов труда, санитарно-пропускного режима и других мероприятий по защите от ионизирующих излучений.

Для своевременного принятия решений по защите от воздействия ионизирующих излучений необходимо иметь объективную и исчерпывающую информацию о параметрах радиационной обстановки. Поэтому создание эффективной системы дозиметрического контроля является также одной из существенных задач Р. б. Он осуществляется дозиметрической службой учреждения или специально выделенным должностным лицом, а также ведомственными службами с применением соответствующих приборов, методик и расчетных методов. Основной задачей дозиметрической службы является контроль за соблюдением норм радиационной безопасности и основных санитарных правил работы с источниками ионизирующих излучений, выбор методов и точек контроля в пределах производственных помещений и на прилегающей территории, а также установление его периодичности. В частности, при эксплуатации гамма-дефектоскопических или гамма-терапевтических установок, в которых используются закрытые радионуклидные источники, достаточно ограничиться контролем дозы гамма-излучения. На радиохимических производствах, в частности на заводах по переработке отработавшего ядерного топлива, наряду с измерением уровня гамма-излучения, большое внимание уделяется контролю радиоактивного загрязнения поверхностей и воздуха рабочих помещений, окружающей территории, а также установлению мест утечки радиоактивных веществ из боксов и коммуникаций. На ядерных реакторах (в т.ч. на АЭС) в условиях нормальной эксплуатации ведущими радиационными факторами, воздействующими на персонал, являются внешнее гамма-излучение и нейтроны. В целях своевременного обнаружения утечки радиоактивных веществ из контуров реактора следует контролировать радиоактивность воздуха в рабочих помещениях и окружающей среде. Частота контроля того или иного параметра радиационной обстановки зависит от режима работы предприятия. Так, при установившемся технологическом режиме на АЭС или радиохимическом производстве можно ограничиться измерением уровня радиоактивного загрязнения поверхностей 1 раз в сутки или даже 1 раз в неделю. При ремонтных работах или возникновении неполадок контроль данного параметра осуществляется значительно чаще.

Функциональными задачами системы Р. б. являются: 1) снижение уровня облучения персонала и населения до регламентируемых пределов на основе комплекса проектных, технических, медико-санитарных и организационных мероприятий; 2) создание эффективной системы радиационного контроля, позволяющей оперативно регистрировать повышение уровня облучения персонала и загрязнения объектов окружающей среды, принимать меры по нормализации радиационной обстановки. К техническим мероприятиям относятся: создание передвижных или стационарных защитных ограждений, автоматизация и механизация технологических процессов, очистка воздуха от радиоактивных веществ на выбросе и т.д. Медико-санитарные мероприятия включают установление санитарно-защитных зон, организацию принудительного санитарно-пропускного режима, установление перечня средств индивидуальной и групповой защиты, осуществление контроля за состоянием здоровья персонала с учетом характера радиационного воздействия. К организационным мероприятиям относится, в первую очередь, обеспечение при работе в условиях повышенного уровня ионизирующих излучений режима труда, исключающего облучение персонала выше допустимых пределов.

Комплекс мероприятий, направленных на снижение уровня облучения, зависит от типа и назначения радиационной или атомно-энергетической установки, характера технологического процесса по переработке или получению радиоактивных веществ. При работе с закрытыми радиоактивными источниками достаточно ограничиться созданием защиты только от внешних потоков излучения. В других случаях, например на радиохимических производствах, при переработке радиоактивных отходов необходимо предусмотреть меры по исключению распространения радиоактивных веществ в окружающую среду и попадания их в организм работающих (см. Противолучевая защита). Весьма существенна оптимизация комплекса средств, направленных на решение обеих функциональных задач, поскольку при их недостаточности может быть нанесен ущерб здоровью персонала и населения, а их избыток приведет к нерациональным финансовым затратам.

Существует эффективная система Р. б. для различных форм применения атомной энергии; она базируется на гипотезе, постулирующей отсутствие порога для так называемых стохастических эффектов, к которым относятся генетические последствия и возникновение рака. Согласно этой гипотезе вероятность стохастических последствий облучения в пределах малых доз линейно зависит от уровня воздействия, т.е. любое превышение дозы над фоном теоретически повышает вероятность возникновения отдаленных последствий. Международная эмиссия по радиационной защите рекомендует руководствоваться этой концепцией, хотя в настоящее время отсутствуют доказательства увеличения числа отдаленных стохастических последствий при воздействии на организм человека ионизирующих излучений в дозах меньше 5 Эв. Такая линейная беспороговая концепция заведомо исходит из переоценки последствий воздействия ионизирующего излучения и представляется наиболее гуманной, т.к. учитывает недостаточность наших знаний о механизме действия ионизирующих излучений на живой организм (см. Радиобиология). Поэтому базирующиеся на этой концепции системы Р. б. для различного типа атомных технологий имеют значительную гарантию безопасности. В результате атомная промышленность по вероятности неблагоприятных последствий, обусловленных производственными факторами, а также по воздействию на окружающую среду относится к числу относительно безопасных отраслей промышленности. Разработанные в ядерной энергетике методы и подходы к обоснованию критериев оценки опасности вредных производственных факторов успешно используются в других отраслях промышленности.

Библиогр.: Безопасность труда в радиационной дефектоскопии, под ред. У.Я. Маргулиса и Е.Д. Чистова, М., 1986; Егоров Ю.А. и Носков А.Л. Радиационная безопасность на АЭС, М., 1986; Маргулис У.Я. Атомная энергия и радиационная безопасность, М., 1988; Моисеев Д. А и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984.

II

Радиационная безопасность

система мероприятий, направленных на устранение или ограничение воздействия источников ионизирующего излучения на людей и окружающую среду.

Источник: Медицинская энциклопедия на Gufo.me


Значения в других словарях

  1. Радиационная безопасность — Комплекс мероприятий при работе с применением радиоактивных веществ и других источников ионизирующих излучений (См. Ионизирующие излучения), обеспечивающий снижение суммарной дозы от всех видов ионизирующего излучения до предельно допустимой дозы (ПДД). Большая советская энциклопедия
  2. Радиационная безопасность — В горной промышленности (a. radiation safety, radiological safety; н. Radiationssicherheit; ф. securite radiologique; и. sequridad de radiacion) — состояние условий труда на объектах горн. пром-сти, при к-ром исключается возможность радиац. Горная энциклопедия
  3. радиационная безопасность — Населения — по определению РФЗ о радиационной безопасности населения от 5 декабря 1995 г. состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения. Большой юридический словарь